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AFIT/GES/ENV/07-M2 
Abstract 

 
The purpose of this research was to investigate orthophosphate as a corrosion 

inhibitor for copper pipe in a high-alkalinity drinking water system.  Specifically, this 

thesis sought to answer three research questions regarding the impact of orthophosphate 

treatment, the nature of the mechanism by which orthophosphate controls copper 

corrosion, and the value of equilibrium modeling in predicting orthophosphate’s effects.  

The research questions were answered through a comprehensive literature review and 

experimental methodology integrating laboratory jar tests, water sampling and analysis 

from a field investigation, qualitative solids analysis, and equilibrium model application.  

This study analyzed field data obtained over the course of a year from a high alkalinity 

water system into which orthophosphate was added to control copper concentrations.   

This field research generally supports results previously reported in the literature: 

in high alkalinity, neutral pH water, a dosage of 3 – 4 mg/L orthophosphate can reduce 

copper levels in a drinking water system from over 2 mg/L to below the 1.3 mg/L 

USEPA action level.  While surface solid analysis did not provide conclusive evidence 

confirming the nature of orthophosphate’s control mechanisms, jar tests and equilibrium 

solubility models were demonstrated to provide useful quantitative predictions of how 

orthophosphate reduces copper concentrations in various waters. 
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THE EFFECT OF ORTHOPHOSPHATE AS A COPPER CORROSION INHIBITOR 

IN HIGH ALKALINITY DRINKING WATER SYSTEMS 

 
 

I.  Introduction 
 
 
1.1.  Overview 
 

The purpose of this research was to investigate the effect of orthophosphate as a 

corrosion inhibitor for copper pipe in a high-alkalinity drinking water distribution system.  

While many public utilities currently use orthophosphate treatment to reduce dissolved 

copper concentrations in drinking water, the reactions between orthophosphate and 

copper pipe are not completely understood.  This research was intended to advance 

knowledge in the field by observing the effects of orthophosphate on the level of 

dissolved copper and by observing changes in the pipe surface.  The results of the 

research will contribute to the further development of a predictive copper solubility 

model, and will provide data that can be reviewed by utilities considering use of 

orthophosphate as a corrosion inhibitor. 

 
1.2.  Background 
 

Copper metal is a good thermal and electrical conductor.  Copper and its alloys 

are commonly used in drinking water distribution systems due to their workability and 

relatively low solubility.  Soluble copper levels in drinking water have implications for 

human health: trace amounts of copper are necessary for human enzyme activity and 

electron transport, but excessive copper exposure can cause gastrointestinal distress, 
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liver, or kidney damage (Pontius, 1998).  While the adverse effects of dissolved copper in 

drinking water are not as severe as those of dissolved lead, under the Lead and Copper 

Rule of 1991, the United States Environmental Protection Agency (USEPA) established 

an action level of 1.3 mg/L for copper in drinking water systems to reduce potential 

health effects.  In addition to human health concerns, low levels of soluble copper are 

desired to maintain the drinking water’s aesthetics (taste, appearance), reduce 

discoloration in fixtures, and maintain the strength of the plumbing system.  Suppliers 

have sought to control the dissolved copper levels in drinking water using a number of 

chemical and physical processes, including pH/alkalinity adjustment, addition of 

corrosion inhibitors such as orthophosphate, and reduction in stagnation time to minimize 

contact between the water and copper pipe. 

Although copper is insoluble in pure water, copper pipe in contact with the 

oxidizing agents present in any real drinking water system will experience corrosion until 

equilibrium is established.  Electrochemical reactions will result in the development of an 

oxide scale at the copper surface and the release of copper ions into solution (Schock et 

al., 1995).    Three general factors contribute to the extent of those reactions and the 

resultant concentration of dissolved copper in a copper-pipe drinking water system: 1) the 

water quality parameters (i.e., pH, temperature, alkalinity, dissolved inorganic carbon); 2) 

the characteristics of the copper pipe itself (i.e., age, chemical composition of the interior 

surface); and 3) the effect of any engineered corrosion inhibitors used by the water 

supplier (Edwards et al., 2002). 
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1.3.  Problem Statement   
 
 Since the implementation of the Lead and Copper Rule, numerous public utilities 

have exceeded the 1.3 mg/L soluble copper action level.  While violations have occurred 

throughout the United States, in a variety of geographic locations, and across a range of 

pH levels and alkalinities, high levels of dissolved copper are particularly common in 

facilities that are served by utilities that rely on groundwater and that take no corrosion 

control measures (Schock et al., 1995).  An example of such a facility is the Wright-

Patterson Air Force Base Child Development Center (WPAFB CDC), where high-

alkalinity groundwater is used as the water source.  Between 2004-2005, high levels of 

copper were detected in drinking water samples taken from the WPAFB CDC, in many 

cases double the 1.3 mg/L action level (Shaw, 2005).   To address the problem, WPAFB 

contracted for the installation of a chemical feed system to add orthophosphate solution 

to the drinking water at the facility’s main water service line.  This approach was based 

on USEPA’s research indicating that orthophosphate would create a protective film 

barrier between the copper pipe surface and the water, thus reducing the levels of copper 

in solution.  Although 56% of surveyed U.S. utilities reported using phosphate inhibitors 

during 2001, there is little understanding of the nature of the inhibition reactions; industry 

relies on vendor data, trial-and-error dosing, and anecdotal evidence in their inhibitor 

selection (McNeill and Edwards, 2002).  The USEPA’s cupric hydroxide model was 

developed in an effort to address this deficiency.  Extensive laboratory testing was 

conducted in order that the effect of orthophosphate could be predicted for given water 

chemistry parameters; however, traditional field studies have produced little data, 
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particularly based on solids analysis, that can be used to refine the model’s constants 

(Schock et al., 1995).     

 
1.4.  Research Focus 
 

The subject of this study was an investigation of the effect of orthophosphate 

treatment on copper solubility in drinking water systems by observing the impact of an 

orthophosphate injection system on copper concentrations over time.  This research 

provided a test case to determine how the USEPA’s model correlates to observed field 

results in a particular environment and will assess the effectiveness of phosphate 

treatment to reduce copper solubility in a high alkalinity water system.  The investigation 

of orthophosphate treatment in high alkalinity water is of specific interest in areas such as 

the U.S. Midwest, due to the water’s higher buffering capacity and subsequent resistance 

to pH adjustment (USEPA, 2003).  

 
1.5.  Research Objectives/Questions/Hypotheses 
 

The objective of this research was to observe the impact of orthophosphate as a 

copper corrosion inhibitor in a high alkalinity drinking water system.  The hypothesis was 

that orthophosphate will reduce the level of dissolved copper in drinking water by 

forming a phosphate scale on the pipe surface, thereby validating the cupric hydroxide 

model’s predictions.  Three specific questions were considered: 

1.  How does the addition of orthophosphate affect copper corrosion in high-alkalinity 

drinking water systems?  

2.  What is the nature of the reaction occurring at the copper pipe/water interface after the 

introduction of orthophosphate to the system? 
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3.  Do observed field measurements of dissolved copper correspond to equilibrium model 

predictions?  If not, what parameters might be the cause of the discrepancy?   

 
1.6.  Research Approach 
 

While most prior studies of orthophosphate treatment have focused on water 

sampling, this research was unique in that it combined both water and solids sampling to 

provide a more comprehensive analysis of systemic changes. To determine how 

orthophosphate affects copper corrosion in high-alkalinity water, this investigation 

measured the levels of dissolved copper in the CDC before and after the installation of an 

orthophosphate system.   To study the nature of the reaction occurring at the metal/water 

interface, this investigation considered the results of the water quality analyses along with 

x-ray diffraction (XRD) and stereomicroscopic analysis of the copper pipe to observe any 

changes in the surface composition.  By performing a series of controlled jar tests and 

entering the water quality parameters in the EPA’s cupric hydroxide model, this 

investigation compared field results with model-predicted values, and identified those 

factors which may account for any discrepancies.   

 
1.7.  Significance 
 

Field results from the water sampling and solids analyses were compared to the 

USEPA’s cupric hydroxide model to determine the model’s applicability to the high-

alkalinity field conditions in this experiment.  Given the challenges presented in trying to 

treat these waters, this information is very relevant nationwide.  An ancillary benefit of 

the research is that it provided WPAFB with an assessment of the orthophosphate 

treatment’s effectiveness and whether or not daily flushing of the facility’s drinking water 
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should be discontinued while the orthophosphate system is in operation, along with 

recommendations about other potential applications of this type of treatment.  While 

supporting several general conclusions about the effectiveness of orthophosphate 

treatment, one limitation of this research is the fact that all field data was drawn from a 

single facility.   

The research will contribute to overall understanding of the action of 

orthophosphate on the surface of copper drinking water pipes.  It has provided field data 

to help validate the cupric hydroxide model.  It also provides an assessment tool for 

predicting the level of orthophosphate required to achieve a required reduction of soluble 

copper, giving water systems engineers with a useful tool to help determine 

orthophosphate doses. 
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II.  Literature Review 

 
 
2.1.  Copper Characteristics and Use in Potable Water Systems 
  

Copper is a nonferrous metal, atomic number 29, which is distributed on an 

average of 68 ppm throughout the earth’s crust, making it the world’s twentieth most 

abundant element.  The element occurs in several valence states; Cu(I) and Cu(II) 

compounds are the most prevalent, while the other states, Cu(0), Cu(III), and Cu(IV), are 

rare.  While some pure copper metal exists naturally, most industrial copper is produced 

through an electrochemical reduction of copper ore compounds (Schugar, 2002).  The 

reduction product, Cu(0), is thermodynamically less stable, and tends to oxidize (corrode) 

in the presence of water (Mattsson, 1989).   Copper is an important commercial material 

due to its high electrical conductivity, low reactivity, and adaptable physical properties 

(Schugar, 2002).   A valued industrial metal, it has been used by humans for over 7,000 

years; copper artifacts from the Middle East have been dated to the sixth century B.C. 

(Schroeder et al., 1966).   Copper’s appearance as a plumbing material in the U.S. 

became widespread during the past sixty years; by 1993, the Copper Development 

Association reported that over 80 percent of all manufactured copper tubing was being 

installed in plumbing systems (Lane, 1993).  In Germany, over 70 percent of domestic 

drinking water systems were installed as copper lines by 1990 (Becker, 2002).  The 

abundance, cost, and suitability of copper as a construction material for small-diameter 

drinking water distribution lines ensure that copper will continue to dominate these 

systems in the near future. 
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2.2.  Human Health Concerns 
 
 In the human body, copper is a component of proteins that perform a range of 

functions, including biosynthesis of connective tissue, terminal electron acceptance for 

oxygen metabolism, oxygen transport, and electron transfer (Schugar, 2002).  It is 

considered an essential trace element in human nutrition, supporting energy production, 

iron absorption, and pigmentation (Pontius, 1998).  Studies have shown that on average, 

daily copper intake is 3200 μg.  Copper comes from foods such as shellfish, meat, eggs, 

vegetables, nuts, fruits, fats, and oils (Schroeder et al., 1966).  Researchers have mapped 

out average copper concentrations in various human tissues and have shown that tissue in 

high-metabolic organs contain the highest copper levels (Schroeder et al., 1966).    

Copper piping appears to reduce initial colonization of microorganisms through a 

combination of algicidal, fungicidal and antibacterial abilities, although the extent and 

mechanisms of that resistance are not clearly understood (Dietrich et al., 2004).  Recent 

research confirms ancient folk knowledge, suggesting copper storage vessels may 

provide human health benefits by eliminating harmful bacteria in drinking water 

(Tandon, 2005).   

 Although it is an essential trace element for biological processes, excessive levels 

of copper can be acutely toxic to humans.  Research has shown elevated levels of copper 

in drinking water can result in gastrointestinal distress, including pain, nausea, and 

vomiting due to irritation of the intestinal lining or alteration of the intestinal microbe 

population (Pizzaro et al., 2001).    Pizarro et al. (2001) also suggest that the severity of 

gastrointestinal distress is based on the concentration of ionic copper species passing 

through the stomach, and therefore, soluble or insoluble copper ingested in drinking 
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water results in more severe symptoms than copper ingested in food, which binds the 

copper ions.  Based on epidemiological data from 1977-82, the Centers for Disease 

Control reported that children are most sensitive to excessive copper ingestion, displaying 

gastrointestinal distress at copper levels of 7.8 mg/L (Pontius, 1998).  Individuals who 

suffer from Wilson’s disease are particularly sensitive to copper ingestion (Pizarro et al., 

1966).  Wilson’s disease is a hereditary disorder that reduces the body’s ability to 

transport and eliminate copper; as a result, individuals with the condition exhibit high 

copper concentrations in their tissues (Pizarro et al., 1966).  

 The need to prevent excessive copper levels in drinking water was recognized and 

addressed in the USEPA’s 1991 Lead and Copper Rule (LCR).  The LCR was established 

under the 1986 Safe Drinking Water Act to minimize lead and copper levels in all public 

drinking water systems by establishing action levels, above which corrective measures 

must be taken to reduce those metals’ concentrations (USEPA, 2004).  Under the 

regulation, the action level for copper is exceeded if more than ten percent of the tap 

water samples measured during a collection period have a copper concentration greater 

than 1.3 mg/L (USEPA, 2000).  Exceedence of the copper action level is not a violation 

of law, but a trigger for the drinking water provider to perform corrosion control 

measures in order to reduce the copper concentrations (USEPA, 2004).  Although there 

has been some disagreement about whether 1.3 mg/L is an appropriate action level, the 

USEPA continues to support that level as a concentration that meets the required trace 

dietary requirement while avoiding the lowest observable gastrointestinal effect level by 

a factor of two (Pontius, 1998):  the proposed 2006 amendments to the LCR do not 

recommend any adjustment to the 1.3 mg/L action level (USEPA, 2006). 
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2.3.  Copper Corrosion and Scaling  
 
 Soluble copper initially enters into drinking water due to corrosion of the interior 

pipe surface.  Like all metal corrosion, copper pipe corrosion is an oxidation-reduction 

reaction, driven by the electrochemical potential created on contact between an oxidizing 

agent, such as dissolved oxygen, and the copper molecules at the pipe surface.  The 

nature of this reaction is well documented elsewhere: the thermodynamic forces 

governing copper corrosion and its reaction kinetics are widely reported in corrosion 

textbooks and empirical research literature (Mattsson, 1989; Lane, 1993; Schock et al., 

1995).  The effects of scale development, water quality, and copper pipe age on corrosion 

have been the subject of several recent studies designed to determine the impact of solid 

speciation on copper solubility (Turek, 2006; Cantor et al., 2003; Lagos et al., 2001).  

Engineers have sought to counter the effects of corrosion through the use of cathodic 

protection, the addition of corrosion inhibitors, or the application of surface protective 

coatings (Mattsson, 1989).  Focusing specifically on corrosion control for drinking water 

systems, the USEPA has developed guidelines that recommend pH adjustment, dissolved 

inorganic carbon (DIC) adjustment, and phosphate addition (USEPA 2003).   

 
2.4.  Orthophosphate Treatment for Corrosion Control 

 
 Phosphate treatment can be accomplished using polyphosphates, orthophosphates 

or a blend of the two phosphorous-containing species.  Orthophosphate compounds 

contain a single phosphorous atom bonded to four oxygen atoms, while polyphosphates 

are chains composed of multiple phosphorous atoms.  The polyphosphate chains, which 

are characterized by the ability to sequester metals in solution, would typically be 
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employed when the treatment goal is control of metal precipitation.  However, these 

chains, which are created through dehydration synthesis, have a tendency to hydrolyze to 

orthophosphate in the presence of water, therefore altering their corrosion control 

mechanism (Cantor et al., 2000).  The principle behind the use of orthophosphate as a 

corrosion inhibitor is the theory that copper will react with orthophosphate to form low-

solubility solids, such as cupric phosphate (Cu3(PO4)2), on the interior of the pipe, 

thereby lowering copper concentration in the water  (Becker, 2002).  In relatively new 

copper pipes that have not developed a natural, low-solubility scale, the copper-

phosphate compounds produced by the addition of orthophosphate will control the 

maximum copper concentration, as depicted in the following figure by Edwards et al. 

(2002): 

 

Figure 1.  Copper Solubility in the Presence of Phosphate Scale 

 

Schock et al. (1995) illustrate the insolubility of cupric phosphate relative to that of 

naturally-occurring copper scale (such as cupric hydroxide, Cu(OH)2) by contrasting the 

solubility constants (Ksp) of the two solid species: 

Cupric hydroxide:  Cu(OH)2(s) + 2H+  ↔  Cu2+ + 2 H2O log Ksp = -19.36 

         (Benjamin, 2002) 
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Cupric phosphate:  Cu3(PO4)2•2H2O(s) ↔ 3Cu+ + 2PO4
3- + 2H2O log Ksp = -38.76 

(Schock et al., 1995).   

Schock et al. (1995) further propose that the solubility of the Cu3(PO4)2 scale, and 

therefore, the effectiveness of orthophosphate as an inhibitor, is determined by the 

relationship between the system’s pH, dissolved inorganic carbon, and orthophosphate 

concentration.  As a result, the total solubility for copper (II) in that system can be 

expressed: 

 S tot, Cu (II) = S Cu (II), OH + S Cu (II), CO3 + S Cu (II), PO4      

 where  

S tot, Cu (II) = total soluble copper 

 S Cu (II), OH = soluble cupric hydroxide 

 S Cu (II), CO3 = soluble cupric carbonate 

 S Cu (II), PO4  = soluble cupric phosphate 

 

While the theory of a Cu3(PO4)2 scale reducing copper solubility is generally accepted, 

there is little research available that relates scale composition, which may be determined 

by analyzing the copper pipe surface, to solubility  (Zhe and Pehkonen, 2004).    

A series of surveys of U.S. drinking water providers between 1994 and 2001 

indicate that between 38 and 72 percent of the utilities surveyed were adding phosphate 

to inhibit corrosion, and over 80 percent of those utilities cited lead or copper control as 

the reason for the phosphate addition (McNeill and Edwards, 2002).  McNeill and 

Edwards (2002) interpreted those survey responses to suggest that many of the utilities 

are using phosphate doses based on anecdotal recommendations or vendor data, without a 

scientific basis, in order to obtain copper and lead concentrations below the action levels 

 12



 

established by the 1991 LCR.  In addition to the LCR’s guidelines, the USEPA’s 2003 

Groundwater Rule required many smaller (previously exempt) utilities to begin 

chlorination.   Studies have shown that chlorination will increase water’s corrosiveness 

due to the chlorine’s strong oxidation potential, particularly at lower pH levels where 

hypochlorous acid is the dominant species (Cantor et al., 2003).  When a chlorine 

residual is mandated, and the elevated chlorine levels resulted in a soluble copper 

increase, Cantor et al. (2003) have demonstrated the effectiveness of orthophosphate to 

reduce copper solubility.     

 Despite the fact that many utilities were basing phosphate-treatment decisions on 

anecdotal evidence or trial-and-error dosing approaches, a relationship between actual 

phosphate dosage and soluble copper measurements began to emerge.  Data from field 

measurements and over a decade of empirical research suggest a correlation between 

phosphate concentration and reduced copper solubility under certain environmental 

conditions.  In a highly-controlled laboratory pipe-rig experiment, orthophosphate 

reduced copper solubility under all conditions tested, with the exception of pH 7.2 in very 

new copper pipes and pH 7.2 in high-alkalinity, old copper pipes (Edwards et al., 2002).  

Dartmann et al. (2004) compiled a comprehensive review of earlier lab results dating 

back to the 1980s that generally confirm that orthophosphate addition lowers copper 

solubility in neutral pH ranges.  However, based on pipe-rig experiments conducted by 

Dartmann et al. (2004) as part of the same study, it was found that at low pH, 

orthophosphate dosage can lead to an increase in copper solubility.  On a series of pipe-

rig tests using high-alkalinity Wisconsin groundwater from two similar communities, 

orthophosphate appeared to reduce soluble copper levels for one community’s water, 
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while slightly raising the solubility in the second (Cantor et al., 2000).  Researchers in 

this experiment noted that differences in water quality (pH, temperature, bicarbonate 

levels, dissolved oxygen, chlorine, nitrate, and sulfide) as well as the different ages of the 

copper pipes may be potential causes for this disparity  (Cantor et al., 2000).  On a larger 

scale, a pilot-scale water distribution test conducted on pipe loops at Seymour Lake, 

Vancouver, yielded similar results:  zinc orthophosphate generally lowered soluble 

copper levels, although the orthophosphate’s effectiveness appears to be sensitive to pH 

(Churchill et al., 2000).  Finally, in a nation-wide study, a 1992 American Water Works 

Association survey of 361 utilities made the following observations about the effect of 

orthophosphate addition on copper solubility (Dodrill and Edwards, 1995): 

- increasing pH reduces solubility whether or not orthophosphate is used; 

- the effectiveness of orthophosphate addition is limited in low alkalinity (<30 

mg/L as CaCO3), low pH (<7.0) and high alkalinity (>90 mg/L as CaCO3), 

high pH (>7.8) waters;   

- the optimal orthophosphate dosage is highly pH-dependent; low pH (below 

7.0) can reduce inhibitor effectiveness, while inhibitor can actually increase 

copper solubility above pH 7.8, depending on alkalinity characteristics  

In summary, use of orthophosphate by U.S. utilities during the past decade appears to 

have had a beneficial result in terms of copper corrosion control, though further study is 

needed to define and better understand the precise conditions, mechanisms, and 

limitations of this control method.   
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2.5.  Orthophosphate-Copper Solubility Models 
 
The tendency of a solid copper compound to dissolve into solution is characterized 

by that solid’s equilibrium solubility product, Ksp.   The following chemical equation is 

for the dissolution of solid cupric hydroxide:   

Cu(OH)2(s) ↔  Cu2+ + 2OH-

Ksp is defined as the product of the activities of the dissolved species on the right-hand 

side of the equation, divided by the activity of the solid on the left-hand side of the 

equation (which, by definition, is 1).   Thus, Ksp = {Cu2+}{OH-}2, where {x} is the 

activity of x.  Activity of any species in the system can be determined by multiplying that 

species’ concentration by an activity coefficient (which can be calculated based on 

solution ionic strength) (Benjamin, 2002).  Thus, by measuring the concentrations of the 

dissolved species on the right-hand side of the equation, one can calculate an activity 

quotient, Q, which equals the product of the activities of the reaction products.  A 

comparison between Q and Ksp can then predict whether copper will tend to precipitate 

(if Q > Ksp) or dissolve (if Q < Ksp) in a particular system (Benjamin, 2002).  To 

determine the effect of orthophosphate as a corrosion inhibitor, one must consider the 

relative Ksp of the copper-orthophosphate species formed after orthophosphate addition, 

to the Ksp of the solid species in the system prior to the orthophosphate addition.  In other 

words, for the orthophosphate to effectively lower the level of soluble copper in solution, 

the following relationship would have to be valid for the system: 

  Ksp (PO4 scale) < Ksp (natural scale), given:  
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-  Ksp (PO4 scale) = solubility product of cuprous phosphate, or whichever 

phosphate species is found to dominate on the interior pipe surface following 

phosphate addition; 

-  Ksp (natural scale) = solubility product of cuprous hydroxide, or whichever solid 

copper species dominates the interior pipe surface prior to phosphate addition.    

 

In an effort to explain the observed effects of orthophosphate on copper solubility, 

and to make useful recommendations to utilities considering a phosphate regimen, several 

copper solubility models have been developed and refined during the past two decades.  

The USEPA’s cupric hydroxide model is based on the premise that equilibrium between 

solid cupric hydroxide (Cu(OH)2(s)) scale and drinking water is the controlling reaction 

governing the level of soluble copper (II) in drinking water systems (Schock et al., 1995).  

Under this premise, the Ksp of the copper-orthophosphate compound formed after 

orthophosphate addition would have to be lower than the Ksp of cupric hydroxide in order 

for the orthophosphate treatment to be an effective option.  Schock et al. (1995) 

demonstrated that copper solubility is better predicted under this model as a function of 

pH and dissolved inorganic carbon (DIC) than under previous models which assumed 

malachite (Cu2(OH)2CO3 (s)) to be the solid scale that governs dissolved copper 

concentrations at equilibrium.  Under the cupric hydroxide model, the addition of a 1-5 

mg/L dose of orthophosphate may allow effective copper corrosion control at a neutral 

pH (7.2 – 8.0)  (Schock et al., 1995).  Without the inhibitor, a pH adjustment above the 

neutral range would be required for similar control.   Schock et al. (1995) acknowledge 

that additional experimental confirmation of the orthophosphate solubility constants are 
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required to refine the model’s precision, and point out that the aging process, in which 

cupric hydroxide is superseded by less soluble solid species, may reduce the 

orthophosphate’s effectiveness. 

 A 2001 pipe-rig experiment comparing copper solubility at various pH, alkalinity, 

pipe ages, and orthophosphate levels supported the cupric hydroxide model’s predictions 

(Edwards et al., 2001).  Edwards et al. (2001) reported a strong correlation (R2 = 0.91) 

between the effects of orthophosphate on old pipes and the effects of the same levels of 

orthophosphate on new pipes.  This correlation suggests the tendency of orthophosphate 

is to reduce corrosion regardless of pipe age, although the model consistently under-

predicted measured copper solubility by 60%, leading the researchers to suggest a kinetic 

limitation, or a solubility product value in the model that differed from the empirical 

observations.   A related experiment comparing predictive model results against observed 

copper solubility measurements verified that the cupric hydroxide model will accurately 

predict solubility near pH 7, but under-predict solubility at higher pH levels (Edwards et 

al., 1996).  Edwards et al. (1996) attribute this discrepancy to the fact that the cupric 

hydroxide model inadequately accounts for effects of high alkalinity at these pH levels.            

 
2.6.  Summary 
 
 Copper will be used as a drinking water plumbing material for the foreseeable 

future due to its attractive properties.  As with any metal, copper piping will corrode in 

the presence of oxidizing agents, and over time, through a combination of corrosion and 

scale formation, will reach an equilibrium condition with the drinking water it contacts, 

releasing soluble copper into that water.  Although not as significant a human health 
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concern as lead, copper is receiving increased attention by the USEPA, and LCR-

mandated action levels have prompted US utilities to focus attention on copper corrosion 

reduction strategies.  One increasingly common strategy is the addition of orthophosphate 

into the drinking water to serve as a corrosion inhibitor.  Although orthophosphate use is 

on the rise, there is still little definitive scientific research that can predict or prescribe the 

required dose to treat specific water systems.  Recent laboratory and pilot plant 

observations indicate a correlation between orthophosphate dosage and copper solubility, 

although the orthophosphate appears to function best within a limited pH and DIC range.  

The USEPA’s cupric hydroxide model appears to be a good predictor of copper solubility 

based on pH, DIC, and orthophosphate levels; however, limited research has been done 

relating the chemical equilibrium equations used by the model with the actual solid 

species determined to be present in the scale.  This research is intended to evaluate the 

cupric hydroxide model’s ability to predict the impact of orthophosphate on soluble 

copper by examining the effect of orthophosphate addition on water chemistry and solid 

scale in copper pipe, and to evaluate the relationship between orthophosphate 

concentration and development of solid scale on the pipe surface.  The experimental 

approach to be used to evaluate the model based upon the observed water and solid 

chemistry is presented in Chapter III.    
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III.  Experimental Materials And Methods  

 
 
3.1.  Introduction 

 
WPAFB draws approximately one billion gallons of drinking water from the 

Great Miami Buried Valley Aquifer annually, through a network of six well systems.  

Treatment includes air stripping, CO2 injection for pH reduction, chlorination, and 

fluoridation before the water enters the base distribution lines (Shaw, 2005).  Based on 

monthly water quality records from November 2005 through July 2006 (Appendix A), 

the drinking water on WPAFB, Area B, has the following chemistry: pH range of  7.2-

7.5; high alkalinity, ranging from 270-300 mg/L as CaCO3;  fluctuating hardness, ranging 

between 20-250 mg/L as CaCO3; a total phosphorus level ranging between 0.16 and 0.63 

mg/L; and a free chlorine residual level ranging between 0.56-0.72 mg/L. 

 Building 20630, the Wright Care CDC, was constructed in 2000.  In June and July 

2004, a drinking water survey of the CDC revealed high levels of copper: the average 

total copper concentration was 1.59 mg/L, as nearly one-third of the 159 taps sampled 

exceeded the 1.3 mg/L LCR action level (Shaw, 2005).   These elevated copper levels 

drew considerable interest due to health care concerns for the young children who were 

the primary building occupants.  As an interim control measure, the facility managers 

were instructed to flush every drinking water tap in the building for at least 30 seconds at 

the start of each business day.  

 As a long-term solution, WPAFB contracted for the installation of an 

orthophosphate injection system in the utility room of the CDC.  This system was 

intended to reduce copper concentration throughout the facility’s drinking water system 
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using a demand-driven injection of orthophosphate solution.  A photo of the installed 

system is provided in Figure 2. 

 
Figure 2.  Orthophosphate Injection System, Bldg 20630 

 
Components of the system included a 55-gallon barrel used to mix and store the 

orthophosphate solution; a feed pump (LMI Model #AA771-358SI) used to deliver the 

orthophosphate solution at a constant, demand-driven flowrate; and an injection port into 

a three-inch copper loop, configured as a bypass at the drinking water service entrance to 

the facility.  The orthophosphate used in the system was a one percent (wt/wt) disodium 

phosphate dihydrate solution (Na2HPO4·2H2O).  The flowmeter was initially set to inject 

1.5 mg/L.  Periodic adjustments were made, increasing the flow to 1.9, then 2.0 mg/L by 
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July 2006, in order to sustain an orthophosphate concentration of at least 1.0 mg/L in the 

building’s water distribution system.  

 
3.2.  Methodology  
  

The methodology followed in this research can be categorized into four processes: 

A.  Water sample collection and analysis – the process used to obtain water 

samples and characterize their chemical composition; 

B.  Jar tests – the process used to develop standardized curves to define the 

expected relationship between pH, orthophosphate, and copper concentration; 

C.  Solids sample collection and analysis – the process used to obtain copper pipe 

samples and characterize their surface solids; and 

D.  Prediction of orthophosphate effectiveness using equilibrium models and 

comparison of model predictions with field results.  

Details of each of these processes are provided in the following subsections. 

     3.2.1.  Water Sampling & Analyses. 
 

 Sampling for water quality is based on a schedule designed to characterize the 

water both before and after the orthophosphate system installation, from multiple 

locations inside the CDC.  The three variables to be established for this methodology 

included: 1) sampling frequency; 2) sampling locations; and 3) required analyses.  

Sampling was conducted at different frequencies, during each of three phases of the 

investigation.  In the first phase, between October and December 2005, prior to the 

orthophosphate system installation, sampling was conducted on a weekly basis, in order 

to ensure at least nine data points were available to serve as a water quality baseline 
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against which later measurements could be compared.  Following the installation of the 

orthophosphate system, biweekly sampling was conducted for four months, until the 

system appeared to reach a stable target level for copper concentration.  At that point, the 

third phase commenced, when sampling frequency was reduced to a monthly follow-up, 

in order to ensure that longer-term copper levels were remaining stable.  A key element 

of the sampling schedule was the flushed and stagnant protocol followed during each of 

the three phases; regardless of the sampling frequency, all samples involved the 

collection of a flushed sample taken at 1700 hrs at the end of each business day, coupled 

with a stagnant sample collected prior to the start of business the following morning 

(0600 hrs), ensuring a twelve-hour stagnation time.  Sampling locations were selected in 

order to best characterize the water throughout the building.  A central location was 

selected to measure water quality in the building distribution system shortly after the 

water entered the facility.  In addition, locations were selected at the far end of the 

distribution system in each of the two building wings, on both the north and south side of 

the facility.   The goal of this sampling location plan was to compare copper levels of 

water shortly after entry into the facility against the copper levels of water that has 

traveled to the terminal ends of the drinking water distribution systems.  The five 

locations that were sampled during weekly baseline sampling are identified in Figure 3. 
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Rm AP 

Rm A6 Rm B6 

Rm A14 Rm B14 

Figure 3.  Initial Weekly Water Collection Locations, WPAFB CDC 

 

During subsequent phases, the three locations shown in Figure 4 were used for sampling: 

 

Rm AP 
Rm A6 

Rm B14 

Figure 4.  Follow-on Water Collection Locations, WPAFB CDC 
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The reduction from five to three sampling locations was based on the observation that 

very similar results were obtained from sampling points B6 and B14 and from sampling 

points A6 and A14.    

The analyses conducted for this experiment were selected in order to provide 

relevant information to determine the effect and characterization of orthophosphate-

copper reactions.  Wet chemistry analyses, performed within 24 hours at an off-site 

laboratory, included copper concentration, orthophosphate concentration, total phosphate 

concentration, and total alkalinity.  Field measurements, performed within 30 minutes of 

sample collection at the Air Force Institute of Technology laboratory, include 

temperature, pH, dissolved oxygen, total chlorine, and free chlorine.  These nine 

measurements provided the data necessary to determine the effectiveness of the 

orthophosphate’s control of copper concentration, as well as the ability to characterize the 

relevant reactions.  The data also provided input parameters for later use in equilibrium 

solubility models.  

Laboratory wet chemistry analysis was performed according to USEPA-approved 

methods.  Copper analysis was conducted using an inductively coupled plasma mass 

spectrometer (ICP-MS) procedure IAW EPA method 200.8.  Total phosphorus and 

orthophosphate analyses were performed using colorimetric spectroscopy IAW EPA 

method 365.4.  Total alkalinity analysis was performed using a titration procedure IAW 

EPA method 310.1 and standard method 2320B. 

In order to analyze the effect of stagnation time on copper corrosion, a series of 

samples were collected from a single tap (Rm AP) in the CDC over a three-day period in 

September 06, after the orthophosphate system had been operating for seven months.  A 
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baseline sample was collected after the tap was thoroughly flushed for 3 minutes.  A first-

draw (250 mL) and second-draw (250 mL) sample was collected and prepared for 

storage.  The faucet was covered and taken out of service for the next three days.  

Follow-on first-draw and second-draw samples were taken after a stagnation time of five 

hours, ten hours, twenty-four hours, and seventy-two hours. 

     3.2.2.  Jar Tests. 
 

 A series of jar tests was performed in order to establish the relationship between 

pH and copper solubility, along with the dose-response relationship between 

orthophosphate and dissolved copper.  Four liters of water were collected from the 

building adjacent to the WPAFB CDC; this water was selected as a representative sample 

of WPAFB drinking water prior to addition of orthophosphate.  To develop a pH-

response curve, one liter of the sample water was spiked with a 15 mg/L copper stock 

solution and titrated with 0.1M HCl through a range of pH 6.5 through pH 8.9.  To 

develop an orthophosphate dose-response curve, one liter of the sample water was spiked 

with a 6.0 mg/L copper stock solution, then sodium phosphate solution was added 

incrementally.  The water was maintained at pH 7.50 (+/- 0.1) by acid/base titration 

throughout the orthophosphate addition.   The orthophosphate was added in increments 

ranging from 0 to 4.2 mg/L in a series of five experiments.  Copper and orthophosphate 

concentrations were measured using methods 135 and 490, respectively, on a Hach 2000 

DR colorimeter.  The results of the two jar test curves are provided in Chapter 4.  These 

standardized curves are required to analyze the effect of the orthophosphate corrosion 

inhibitor used in the CDC.       
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     3.2.3.  Solids Sampling & Analysis. 
 

To analyze the surface characteristics of the copper pipe in the WPAFB CDC, 

samples of the pipe were removed from the facility for X-ray diffraction (XRD) 

spectroscopy and stereo-microscopic inspection.  Six-inch segments of copper pipe were 

removed from horizontal runs in the distribution system immediately adjacent to 

sampling locations A6 and B14.  Small chips were then cut from the bottom and top of 

these samples in preparation for XRD and stereomicroscopic analysis.  These samples 

were collected twice: first, in December, 2005, prior to the orthophosphate treatment, and 

again in October, 2006, after the orthophosphate system had been operating for 

approximately eight months.  Analysis was performed in the USEPA water research 

laboratories, Cincinnati. 

     3.2.4.  Copper Solubility Model Application. 
  

          3.2.4.1.  USEPA Cupric Hydroxide Model. 
 

 The cupric hydroxide model developed by the USEPA (see Section 2.5) allows 

the user to specify precipitation reactions in order to predict equilibrium concentrations of 

individual species within a system.  To determine the effects of increasing 

orthophosphate on copper concentration, the model was constructed with the following 

thermodynamic constants: 

Table 1.  Thermodynamic Constants in Cupric Hydroxide Model 

Species Log K or Log β value 

CuOH+ -7.96 
Cu(OH)2 -14.1 
Cu(OH)3

- -26.9 
Cu2(OH)4

2- -39.56 
Cu2(OH)2

2+_ -10.58 
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Cu3(OH)4
2+ -20.76 

CuCO3 6.73 
Cu(CO3)2

2- 10.6 
CuHCO3

+ 12.13 
Cu(OH)CO3

- -4.25 
Cu(OH)2CO3

2- -13.14 
CuH2PO4

+ 15 
CuHPO4

0 16.35 
Cu(OH)2 (s) 8.89 
Cu3(PO4)2 (s) -38.76 

 
(Schock et al., 1995 (Table 3)) 

 
In addition, the dissolved inorganic carbon (DIC) concentration was specified as 73 mg 

C/L, based on the typical alkalinity of 280 mg/L as CaCO3 and pH of 7.5 observed in the 

WPAFB CDC.  pH for each of the simulations was specified over the range pH 6.0 – pH 

10.0, with calculations reiterated in 0.1 pH increments.  The model simulation results 

pictured in Figure 5 required seven simulations: the solid species and orthophosphate 

parameters for each of the seven simulations are identified below: 

Table 2.  Parameters Used During Cupric Hydroxide Model Simulations 

Simulation Possible Solids [PO4
3-] (mg/L) 

1 Cu(OH)2 0.0 
2 Cu(OH)2, Cu3(PO4)2 0.5 
3 Cu(OH)2, Cu3(PO4)2 1.0 
4 Cu(OH)2, Cu3(PO4)2 2.0 
5 Cu(OH)2, Cu3(PO4)2 3.0 
6 Cu(OH)2, Cu3(PO4)2 4.0 
7 Cu(OH)2, Cu3(PO4)2 5.0 

 

When no orthophosphate is present, the only solid specified is Cu(OH)2(s).  As 

orthophosphate concentration is increased, Cu3(PO4)2(s) is introduced as an additional 

species.  The results of these simulations are pictured below in Figure 5, with each curve 
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representing theoretical dissolved copper concentration vs pH for seven specific 

orthophosphate concentration levels: 

0.0
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2.0

3.0

4.0
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8.0
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C
u 

(m
g/

L)

PO4 = 0
PO4 = 0.5
PO4 = 1
PO4 = 2
PO4 = 3
PO4 = 4
PO4 = 5

  

Figure 5.  Cupric Hydroxide Model Results: Cu (mg/L) vs pH 

 
To focus on the specific pH level typically observed at the WPAFB CDC (pH = 7.5), the 

copper concentration from Figure 6 was plotted against each orthophosphate 

concentration at pH 7.5, yielding the following curve: 
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Figure 6.  Cupric Hydroxide Model Results: Cu vs PO4 (mg/L) 

 
A comparison of the cupric hydroxide model’s outputs to field measurements from the 

WPAFB CDC is included in Chapter IV. 

          3.2.4.2.  VMINTEQ Model 
 

Visual MINTEQ, version 2.40, (VMINTEQ) provides another model against 

which the field measurements for this research could be compared.  VMINTEQ is a 

chemical equilibrium program designed to access a large thermodynamic database.  It 

was initially developed by the USEPA in 1997, and it has been continually updated by 

the Swedish Research Council and Foundation for Strategic Environmental Research 

(Gustafsson, 2004) during the past decade.  Gustafsson reports that while the program is 

commonly used to model the speciation of dissolved ions in water, it can also be used to 

model precipitation/dissolution reactions and titrations.  The VMINTEQ model can be 

used to simulate the reactions for multiple species under a wide variety of water quality 

conditions, allowing predictions for complex systems.   
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For this research, two models were developed: one model to replicate the conditions 

present during the standardization jar tests, as described in section 3.2.2; a second model 

to simulate conditions encountered in the field system measured in the WPAFB CDC.  

Jar Test Simulation Model 

For the first VMINTEQ model, the goal was to predict dissolved copper 

concentrations observed in the laboratory jar tests as a result of orthophosphate addition.  

Therefore, the following water quality assumptions were used to develop the model: 

- Chlorine:  set to 0.000002M (typical CDC free chlorine residual = 0.07mg/L)  

- Na+:  set to 0.0065M (typical Area B water quality levels = 150 mg/L) 

- Alkalinity:  set to 0.0057M as HCO3
- (Area B alkalinity = 280 mg/L as CaCO3) 

- pH:  the model was run at three pH levels, bracketing the typical observed 

values at the CDC: pH 6, pH 7, pH 7.5 

During the jar test, the sample water was not exposed to the solid scale that would be 

encountered in a copper pipe system as it was tested in a glass cell. However, VMINTEQ 

allows the user to identify possible solid species, and therefore, both Cu(OH)2(s) and 

Cu3(PO4)2(s) were specified as possible species in the model.   In order to provide 

dissolved copper for the test, the sample water was spiked with a cupric perchlorate 

solution.  Therefore, in the VMINTEQ model, the following component concentrations 

were used, based on the jar test concentration of the copper perchlorate: 

 - Cu2+: set to 0.000118M (based on 7.7 mg/L Cu(ClO4)2 in jar test) 

 - (ClO4)2 : set to 0.000236M (based on 7.7 mg/L Cu(ClO4)2 in jar test) 

The VMINTEQ model was used to evaluate the effect of various levels of 

orthophosphate on the dissolved copper.  Therefore, during the model simulations, PO4
3- 
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was added incrementally, in 100 steps of increasing concentration, from 10-6 M to 10-4 M.  

The PO4
3- was added in the form of sodium phosphate (Na3(PO4)•12H2O).  As the 

background concentration of Na+ ions in the model had been defined as 0.0065M, the 

additional 3x10-4 M Na+ added at the highest orthophosphate increment (10-4 M) was 

assumed insignificant (<5% of Na+ in solution), so increments of Na+ were not simulated 

in the model.  Results of this model are shown in Figure 7 for three different pH levels.   
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Figure 7.  VMINTEQ Model Results:  Jar Test Simulation 

 
Note the horizontal lines in Figure 7 at the lower end of the phosphate range, for each of 

the modeled pH values.  These lines indicate that below a certain pH-dependent 

phosphate concentration, addition of small quantities of phosphate have no effect on the 

dissolved copper concentration.  The phosphate concentration at which the added PO4 is 

sufficient to cause copper precipitation, resulting in reduced copper concentration, is 

indicated by the point at which the curves depart from the horizontal.  
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The effect of alkalinity on copper concentration may be isolated within the 

VMINTEQ simulation to expose a relevant phenomenon.  When the simulation was run 

based on the typical high-alkalinity (280 mg/L as CaCO3) conditions observed at 

WPAFB, as in Figure 7, the predicted equilibrium concentration of copper prior to the 

addition of orthophosphate was a high 7.5 mg/L.  When the model was run using a lower 

range of alkalinity values, the results appeared as shown in Figure 8. 
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Figure 8.  VMINTEQ Results, Effect of Alkalinity (mg/L as Ca CO3) 

 
The impact of increasing alkalinity is clearly illustrated in Figure 8:  the high alkalinity 

levels typical at WPAFB result in an order of magnitude increase in copper concentration 

at equilibrium in a cupric hydroxide system.  

Equilibrium concentration for Cu2+ in the absence of orthophosphate can be 

calculated (see Appendix B).  These calculations can be used to help evaluate how the 
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VMINTEQ code is working, and what thermodynamic parameters are being used.  In the 

simplified calculations, equilibrium with copper hydroxide solid in distilled water at pH 

7.5 was assumed, and a solubility product (Ks0) of 10-19.11 was used for the copper 

hydroxide solid (Schock et al., 1995).  We see from Appendix B that the value for the 

equilibrium copper concentration calculated under these simplifying assumptions is 

approximately 1 mg/L, while the value predicted by the VMINTEQ model is 

approximately 7 mg/L (see Figure 7) at PO4 concentration = 0 mg/L. However, as seen in 

Table 3, the VMINTEQ model closely approximates the simplified calculations if 

alkalinity in the model is reduced to the alkalinity (0 mg/L) used in those calculations. 

Table 3.  Model Predictions Compared to Simple Calculations 

Alkalinity VMINTEQ Prediction Simplified Calculations 

280 7.4 mg/L - 

125 3.8 mg/L - 

0 0.4 mg/L 1.0 mg/L 

 

This correlation suggests that the VMINTEQ output at higher alkalinity levels would also 

be an accurate prediction of expected copper concentration. 

Field System Simulation Model 

For the second VMINTEQ model, the goal was to predict the effect of adding 

orthophosphate on dissolved copper concentrations measured in the field.  The following 

water quality assumptions were used to develop the model: 

- Chlorine:  set to 0.000002M (typical CDC free chlorine residual ≈ 0.07mg/L)  

- Na+:  set to 0.0065M (typical Area B water quality levels ≈ 150 mg/L) 
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- Alkalinity:  set to 0.0057M as HCO3- (Area B alkalinity ≈ 280 mg/L as CaCO3) 

- pH:  the model was run at three pH levels, bracketing the typical observed 

values at the CDC: pH 6, pH 7, pH 8 

This second model does not specify initial copper levels (there is no spiking of cupric 

perchlorate in the field measurements), but it assumes the presence of a solid cupric 

phosphate scale on the interior of the copper pipe, with cupric hydroxide specified as a 

possible solid.  Again, PO4
3- is added to the model system in a 100-step incremental 

dosage, from 10-6 M to 10-4 M (as above, the associated increments of Na+ are 

disregarded).  The result of this second model for each of three pH levels is shown below 

in Figure 9. 
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Figure 9.  VMINTEQ Model Results:  Field Simulation 

 

A comparison of the models’ predicted values and actual laboratory/field measurements 

is discussed in Chapter IV. 
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3.3.  Sample Collection Protocol 
 
     3.3.1.  Chemicals and Equipment. 
 

The following chemicals and equipment were used in the collection and analysis 

of field data described in Sections 3.3.2 through 3.3.4:  

- Nitric acid for rinsing and metals sample preservation: Fisher Scientific nitric acid 

(OPTIMA grade) 

- Deionized water source:  Millipore Progard II. 

- Orthophosphate for jar tests:  Sodium phosphate (Na3PO4·12H2O) diluted to stock 

solution, 1 mL/L = 1.38 mg/L 

- Copper for jar tests: Cupric perchlorate (Cu(ClO4)·6H2O) diluted to stock solution,   

1 mL/L = 1.34 mg/L 

- Orthophosphate used in bldg 630 corrosion control system:1% disodium phosphate 

dihydrate solution (Na2HPO4·2H2O) 

- Low-density polyethylene (LDPE) bottles for water sample collection: Cole Parmer 

Nalgene LDPE plastic bottles.  Cat no. C-06033-50 (250 mL) and C-06033-20 (125 mL). 

- Glass bottles for water sample measurement:  Pyrex, 250 mL, lot 1395 

- Chlorine test kit used in AFIT laboratory:  Hach Pocket Colorimeter II.  Catalog no. 

58700-00, lot L4301. 

- Dissolved oxygen meter (AFIT lab):  YSI 85 Oxygen, Conductivity, Salinity & 

Temperature Meter, model 85/25 FT. 

- Direct read meter (USEPA lab):  Hach DR2000 Direct Reading Spectrophotometer. 

- X-ray Diffraction Scope:  Scintag (Scintag, Inc., Santa Clara, CA) XDS-2000 theta-

theta diffractometer with a copper X-ray tube was used to acquire X-ray patterns. 
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     3.3.2.  Water Sampling Collection Protocols. 
 

At each of the water sampling locations identified in Figure 3, the following 

protocol was observed: 

A.  For each round of sampling, a primary sampling date (D) was established, and the 

prior date was identified as day (D-1). 

B.  Prior to sample collection, field sampling instruments were calibrated in the 

laboratory.  The pH meter was calibrated with 7.0 buffer solution.  The YSI dissolved 

oxygen meter was calibrated according to manufacturer’s instructions, using a fifteen 

minute calibration period and setting the elevation to 700 ft.  All LDPE sample collection 

bottles were flushed with deionized water, then rinsed with a 1+1 nitric acid solution.   

C.  At 1700 on each day (D-1), the cold-water sample faucet was turned on for one 

minute.  The faucet was turned off, then dried with a paper towel.   

D.  The LDPE sample collection bottles were filled in the following sequence, as 

required:  250 mL sample (for copper analysis); a second 250 mL sample (when required 

for comparative copper analysis); 125 mL sample (for orthophosphate and total alkalinity 

analysis); 125 mL sample (for total phosphorous analysis).  All bottles were capped 

immediately for transportation to laboratory for additional preparation. 

E.  250 mL Pyrex bottle was filled for field analysis of pH, temperature, dissolved 

oxygen, and chlorine concentration.  pH probe was used for direct reading of pH from 

Pyrex bottle using a one-minute pH measurement.  Temperature and dissolved oxygen 

were measured using YSI dissolved oxygen probe; measurements were based on 

stabilized readings obtained during one-minute test periods, in which the probe was 

agitated gently to prevent oxygen depletion at the probe tip.  Chlorine residual 
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concentrations were measured using the Hach Pocket Colorimeter.  Two 10-mL glass 

vials were filled from the Pyrex bottle.  The first 10-mL sample is analyzed for free 

chlorine (free available residual chlorine which has not reacted with anything) following 

a one-minute reaction time and a DPD Free Chlorine Reagent packet.  The second 10-mL 

sample was then analyzed for total chlorine (total concentration of chlorine in the water, 

including combined chloroorganics and chloramines, as well as free available chlorine) 

following a three-minute reaction time and a DPD Total Chlorine Reagent packet.  All 

field measurements were recorded in an experimental notebook. 

F.  Upon completion of the samples on day (D-1), the faucet was marked with a placard 

labeled “Do not disturb, sampling in progress,” and covered with a clear plastic bag. 

G.  Steps C through F were repeated for every additional sample faucet location required. 

H.  At 0600 on each day (D), after twelve hours of stagnation, follow-on samples were 

collected from every required faucet prior to any flushing of the tap water.    

I.  After removing the plastic bag and placard, LDPE sample bottles were collected in the 

following sequence:  first-draw 250 mL sample (for copper analysis); second-draw 250 

mL sample (when required for comparative copper analysis); 125 mL sample (for 

orthophosphate and total alkalinity analysis); 125 mL sample (for total phosphorus 

analysis).  All bottles were capped immediately for transportation to laboratory for 

additional preparation. 

J.  250 mL Pyrex bottle was filled for field analysis of pH, temperature, dissolved 

oxygen, and chlorine concentration; measurements were obtained as per step E above. 

K. Steps I through J were repeated for every additional sample faucet location required. 
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L.  Upon return to the laboratory, samples were preserved for further analysis.  All copper 

samples were acidified with 0.15 percent nitric acid to a pH less than 2.0 IAW EPA 

200.7.  All total phosphorus samples were acidified with sulfuric acid to pH less than 2.0, 

IAW EPA method 365.4.  All samples were refrigerated to maintain temperature of 4°C.  

     3.3.3.  Solids Sampling Collection Protocols. 
 

At each of the solid sampling locations identified in Figure 4, the following 

protocol was observed: 

A.  The ceiling panels above each water sampling tap were removed to reveal the 

incoming ¾ inch cold water supply line. 

B.  A six-inch segment was marked on a horizontal pipe section close to the sampling tap. 

C.  The segment of pipe was removed, placed in a Zip-loc bag and sealed. 

D.  Steps A through C were repeated for the second sampling location. 

E.  The pipe segment was cut longitudinally to produce a top and bottom half. 

F.  Two ¼ inch square chips were cut from the end of each half for XPS analysis. 

G.  The halves were marked with a designator (“top” or “bottom”), then replaced in the 

sealed bags along with their associated chips. 

     3.3.4.  Solids Sample Analysis. 
 
For X-ray Diffraction Spectroscopy (XRD), the following settings were observed: 

 
A.  Tube was operated at 30 kV and 40 mA; 

B.  Scans were typically over the range of 5 to 60 degrees 2 theta, with 0.03 degree step 

sizes that were held for 3 seconds each; 

C.  Pattern analysis was performed using computer software provided by manufacturer, 

generally following American Society for Testing and Materials Standards procedures. 
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IV.  Results And Discussion 

 

 
4.1.  Results  
 
 
     4.1.1.  Jar Test Relationships: Copper Concentration, pH, and PO4 
Concentration. 
 

The series of jar test standardization experiments indicated that copper solubility 

and pH are inversely related (Figure 10). 
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Figure 10.  Soluble Copper (0.2 µm filter) vs pH 

 
Linear regression of these data in the mid-pH range suggests a strong inverse relationship 

(R2 = 0.961), in which a pH increase of 1 results in a 6.3 mg/L decrease in copper 

solubility (raw data and regression equations in Appendix C).  The jar test results indicate 

that a pH of 8.35 would be required to meet the 1.3 mg/L action level maximum for 

copper.  The relationship between orthophosphate and copper concentration is presented 

in Figure 11. 
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Figure 11.  Soluble Copper vs Orthophosphate, pH 7.5 

 
Linear regression of this relationship suggests a strong inverse relationship (R2 = 0.985), 

where an increase in orthophosphate will result in a decrease of soluble copper 

concentrations in approximately a 2:1 ratio (1 mg/L PO4 reduces Cu2+ by 0.49 mg/L)  

(raw data in Appendix D).   The results indicate that an orthophosphate concentration of 

5.8 mg/L would be required to meet the 1.3 mg/L action level maximum for copper 

concentration at pH 7.5. 

     4.1.2.  Field Results:  Orthophosphate, Chlorine, and Copper Relationship. 
 

Figures 12 through 17 show the relationship between total copper concentration 

and orthophosphate concentration in three sampling locations in building 20630.  Figures 

12, 14, and 16. show the copper concentration after flushing while Figures 13, 15, and 17 

show the copper concentration measured after the water remained stagnant for twelve 

hours.  As would be anticipated, copper concentrations after the water was held stagnant 

were generally higher than the concentrations in the flushed water. 
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Figure 12.  Cu vs PO4, Stagnant (Rm AP)          

 Figure 13.  Cu vs PO4, Flushed (Rm AP) 

         
 

 

 

 

 

 

Figure 14.  Cu vs PO4, Stagnant (Rm A6)    

Figure 15.  Cu vs PO4, Flushed (Rm A6) 

  

 

 

 

 

Figure 16.  Cu vs PO4, Stagnant (Rm B14)     

      Figure 17.  Cu vs PO4, Flushed (Rm B14) 
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     4.1.3.  Field Results:  Stagnation Time Relationships. 
 

Figures 18 and 19 show the relationship between chlorine demand, copper 

concentration, and orthophosphate concentration.  The figures present the level of total 

copper (mg/L), orthophosphate (mg/L as PO4), chlorine residual following a 12-hr 

stagnation period (mg/L), and chlorine demand (mg/L).  Chlorine demand, shown in the 

following figures as “Delta Cl”, is defined as the difference between the chlorine 

concentration at 1700 hrs one day and at 0600 hrs the next morning, following a 12-hour 

stagnation period.  Therefore, a negative “Delta Cl” value indicates a decline in chlorine 

concentration during the stagnation period.   Figure 18 shows free chlorine 

concentrations; Figure 19, total chlorine concentrations (free and total chlorine 

concentrations measured as described in Section 3.3.2.) 
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Figure 18.  Copper, Orthophosphate and Free Chlorine 
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Figure 19.  Copper, Orthophosphate, and Total Chlorine 

 
Both free and total chlorine residual data show similar trends.  Prior to the 

orthophosphate treatment in Feb 06, there were low chlorine residuals and demand: the 

chlorine residuals at 1700 hrs each day were already so low that an additional 12 hours of 

stagnation did not appear to substantially lower the chlorine levels the next morning.  

Immediately after the introduction of orthophosphate, the copper levels declined.  It 

should also be noted that chlorine demand appears to rise after the introduction of 

orthophosphate.  In fact, this is the result of a significant increase in residual chlorine 

measured in the afternoon flushed water samples (see Figure 20 below), while the 12-
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hour stagnant chlorine residual levels remained constant.  This suggests that one effect of 

orthophosphate is a delay in chlorine demand:  after orthophosphate treatment, the 

chlorine residual remained higher in the pipe, as measured during the afternoon sampling.  

Over the next 12 hours, chlorine concentrations decreased to low levels, which were 

similar to the levels when no orthophosphate was added. 
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Figure 20.  Orthophosphate and Chlorine Residual, Flushed Measurements 

 
The effects of stagnation time on copper and chlorine concentration are shown in 

Figures 21 and 22, respectively, based on measurements obtained following the 

standardization experiment procedures described in Section 3.2.1., Figure 21 indicates an 

increase in copper concentration as stagnation time increases, with the sharpest rise 

occurring during the first eight hours.  The disparity between first and second draw 
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samples at four- and eight-hour stagnation times may be due to the fact that while the 

sample faucet was taken out of service during the sampling period, adjacent water 

fixtures were in operation.  Therefore, the first-draw samples represent true “stagnant” 

samples, while the second draw may be mixed with some moving water which flowed 

through adjacent fixtures.  After 24 hours, when all facility fixtures had been taken out of 

operation, copper concentration measures in the first and second draw samples are 

similar.  Figure 22 indicates that chlorine residual levels decrease with stagnation time, 

with over 90 percent of the residual consumed in the first 24 hours. 
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Figure 21.  Copper Concentration vs Stagnantion Time 
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Figure 22.  Chlorine Residual vs Stagnation Time 

 
 

     4.1.4.  Comparison: Field Test Results and Jar Test Standard Curves. 
 

Before comparing the results of the jar tests and field measurements, a brief 

review of the pertinent reactions is in order.  The jar tests are intended to duplicate the 

reactions which occur in new copper pipe, where Cu(OH)2(s) is the predominant 

component of the solid scale at the pipe surface.  As discussed previously, the dissolved 

copper concentration in such a system is then driven by the solubility product (Ksp) of 

Cu(OH)2 in water, through the reaction:  Cu(OH)2(s) ↔ Cu2+ + 2OH- .  Copper is 

introduced to the sample water in the jar test through the addition of cupric perchlorate, 

which adds Cu2+ into solution.  Therefore, in the absence of orthophosphate, Cu(OH)2(s) 

precipitation would be expected in accordance with the cupric hydroxide reaction and 

solubility product described above.  As orthophosphate is introduced to the system, the 

additional reaction, Cu3(PO4)2•2H2O(s) ↔ 3Cu+ + 2PO4
3- + 2H2O , is expected, and 
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according to the literature (refer to Section 2.4), should result in greater precipitation due 

to the lower solubility product of the cupric phosphate relative to cupric hydroxide, 

reducing dissolved copper concentration. 

In Figures 23 and 24, the relationship between copper concentration and 

orthophosphate concentration, as determined from jar tests and field observations, are 

compared.  Field results shown in Figure 23 show copper and orthophosphate 

measurements after 12 hours stagnation, while Figure 24 indicates measurements taken 

after flushing.  
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Figure 23.  Field (Stagnant) vs Jar Test Results, PO4 - Cu Concentration 
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Figure 24.  Field (Flushed) vs Jar Test Results, PO4 - Cu Concentration 

 
A quantitative comparison of the relationship is included in Appendix E, in which linear 

equations relating Cu-PO4 concentrations are provided.  In both the flushed and stagnant 

cases, the relationship between orthophosphate and copper concentration follow similar 

trends; an orthophosphate concentration increase results in a copper concentration 

decrease.  The initial copper levels are considerably higher in the jar test experiments, 

due to the fact that spiked copper is thoroughly mixed with the sample water.  Under 

these experimental conditions, copper concentrations, when there is no orthophosphate 

present, are approximately 8 mg/L (unfiltered) or 4 mg/L (0.2 μg filter), compared to the 

1 – 2 mg/L concentration observed in the field measurements. (see Figure 21).  These 

values are considerably higher than the theoretical equilibrium levels, 1.0 mg/L at pH 7.5, 
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(see Appendix B); a discussion of this discrepancy is included in below in section 4.2.3. 

However, the effect of orthophosphate addition on copper concentration is similar, 

regardless of the initial copper concentration before the orthophosphate was added.   The 

following summary table (Table 4) indicates the decrease in total copper concentration 

(mg/L) per of 1 mg/L increase in orthophosphate: 

Table 4.  Decrease in Copper per Unit Increase in Orthophosphate 

  Flushed Stagnant
Field (unfiltered) 0.158 0.253 
Jar (unfiltered) 0.258 
Jar 0.2 (ug filter) 0.487 

 
Note that the effect of orthophosphate addition on copper concentration determined using 

filtered jar tests is approximately double that measured in unfiltered tests (both field and 

jar tests), suggesting that orthophosphate may more effectively reduce soluble, rather 

than particulate, copper.  Examining the unfiltered field samples and the unfiltered jar 

tests, it can be noted that the 12-hour stagnant field samples compare more favorably to 

the jar test results than the flushed sample.  Again, this relationship may be due to the fact 

that the jar test cell is agitated for 30 minutes, providing a closer approximation of the 

conditions, which develop in the field system after 12 hours stagnation. 

No meaningful comparison could be made between laboratory and field results 

for the soluble copper-pH relationship.  Although copper solubility appears to be a clear 

function of pH when all other parameters are held constant (refer to figure 4.1, above), 

the field measurements taken during this research were conducted in such a narrow pH 

range that there was no basis for a comparison. 
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     4.1.5.  Field Results:  Orthophosphate Effects Due to Time And Distance 
 

The following figures (Figures 25 through 27) display the change in 

orthophosphate concentration during a twelve-hour stagnation period in each of the three 

sampling locations of the WPAFB CDC.  The first bar at each data point represents 

orthophosphate concentration due to the injection of orthophosphate during fully flushed 

operating conditions in late afternoon.  After water flow was finished for the day, the 

sampling faucets were closed (per procedures described in Section 3.3.2.) and no 

additional orthophosphate was injected into the system.  The second bar in each figure 

represents the orthophosphate concentration from the same sampling location after a 

twelve-hour stagnation time. 
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Figure 25.  Orthophosphate Change (Rm AP) 
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Figure 26.  Orthophosphate Change (Rm A6) 
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Figure 27.  Orthophosphate Change (Rm B14) 

 

There is no clear trend in orthophosphate concentration change over time: the 

concentrations are statistically the same before and after the 12 hours stagnation time.  In 

some cases, the orthophosphate concentration appears to increase after stagnation, even 

though no orthophosphate is being added.  Based on these observations alone, there is no 
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evidence that orthophosphate is being consumed by a reaction with copper during the 

stagnation period:  if such a reaction was occurring, a consistent decline in 

orthophosphate levels would be expected.   

In a similar analysis, Figures 28 and 29 compare the orthophosphate concentration 

in location AP (a few meters downstream of the orthophosphate injection) to the 

concentration at the far ends of the distribution system (locations A6 and B14, each 

approximately 70 meters downstream of AP).  The comparison is offered for both flushed 

(Figure 28) and stagnant (Figure 29) measurements. 
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Figure 28.  Orthophosphate at Beginning and End of Water Distribution Lines, Flushed 
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Figure 29. Orthophosphate at Beginning and End of Water Distribution Lines, Stagnant 

 

Once again, there is no clear evidence of a decline in orthophosphate with distance from 

the orthophosphate injection source.  If orthophosphate was being consumed in 

significant quantities through reactions in the water or along the pipe surface, a consistent 

decrease in orthophosphate concentrations from location A6 to the terminal locations 

would be expected.   

     4.1.6.  Solid Species Present Before and After the Orthophosphate Treatment. 
 

Before Treatment   
 

Based on XRD and stereomicroscopic scanning results (compiled in Appendix 

G), the interior surface prior to the orthophosphate treatment is dominated by elemental 

copper (77%), carbon, (10%), oxygen (10%), with low phosphorus (1.7%) and other trace 

elements (percentages given by weight).  Dominant solid species include elemental 

copper and cuprite (CuO).  The interior surface is best described as having traces of a 

particulate film, with isolated pitting spots, evidence of prior corrosion. 
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After Treatment   

Based on XRD and stereomicroscopic scanning results (see Appendix H), the 

interior surface after the orthophosphate treatment is dominated by elemental copper 

(65%), carbon, (19%), oxygen (12%), with low phosphorus (1.9%) and other trace 

elements.  Dominant solid species still include elemental copper and cuprite.  The interior 

surface appears to have a slightly more uniform film than seen on the pretreatment 

surface. 

 
4.2.  Discussion 

 
     4.2.1.  Is Orthophosphate Effective For Reducing Dissolved Copper? 
 

During the course of this research, six cases were examined:  three sampling 

locations (rooms AP, A6, and B14 of building 20630), both after flushing and following 

stagnation.  In five out of six cases, the addition of orthophosphate led to a statistically 

significant reduction in copper levels (at a 95 percent confidence level), with mean 

copper concentrations below the 1.3 mg/L action level.  A summary of the six cases is 

tabulated below: 

Table 5.  Statistical Analysis of Change in Mean Copper Concentration 

 Location Time Mean [Cu] 
Before PO4

Standard 
Deviation 

Mean [Cu] 
After PO4

Standard 
Deviation 

95% Confident That Means Are Statistically 
Lowered? 

    (mg/L)   (mg/L)   95% 2-tailed 
Student's t 

Calculated t 
Statistic 

Significant? 
(Calc t > 95% t)

                  
AP Flushed 0.567 0.407 0.430 0.307 2.15 0.74 No 
AP Stagnant 1.825 0.343 1.284 0.596 2.11 2.51 Yes 
A6 Flushed 1.088 0.233 0.624 0.273 2.13 4.23 Yes 
A6 Stagnant 1.886 0.171 1.194 0.337 2.10 6.04 Yes 
B14 Flushed 0.988 0.200 0.593 0.210 2.13 3.97 Yes 
B14 Stagnant 1.747 0.292 1.020 0.401 2.11 4.56 Yes 
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In the only case where no significant decrease occurs, it should be noted that the initial 

copper concentration of 0.567 mg/L is well below the copper action level—and below the 

copper concentrations at the other building locations—prior to the orthophosphate 

treatment.  This is likely due to the sampling location’s placement: at only about six 

linear meters from the building’s water service entrance, the water has not been in contact 

with the building’s copper lines long enough to develop a high copper concentration.  

 Also note that the exceptional case occurs during a flushed sample measurement; 

as expected, the stagnant sample at the same location yields a higher initial copper 

concentration, and subsequently, a more significant reduction after orthophosphate 

treatment.  The statistical analysis and calculations are included in Appendix F. 

 Therefore, assuming that all other influent water quality parameters were 

maintained constant throughout the experimental period, there appears to be statistically 

significant evidence that orthophosphate reduces copper concentration in high alkalinity 

drinking water systems.  To examine the other water quality parameters before and after 

the addition of orthophosphate, the following summary table is provided to identify any 

changes in pH, temperature, dissolved oxygen, chlorine residual, and total alkalinity: 

Table 6.  Water Quality Characteristics Before and After Orthophosphate 

   pH 
Temp      

(deg C) 
DO      

(mg/L) 
chlorine-free 

(mg/L) 
chlorine-total 

(mg/L) 
alkalinity (mg/L 

as CaCo3) 
mean (before PO4) 7.53 21.03 7.48 0.13 0.20 271.92 
mean (after PO4) 7.37 20.40 8.08 0.25 0.42 272.83 

95% confidence "t" 2.01 2.02 2.02 2.12 2.05 2.06 
test t 4.92 1.70 3.92 1.45 1.96 0.10 

significant difference? YES NO YES NO NO NO 
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There were no statistically significant changes in four of the parameters:  

alkalinity, temperature, free and total chlorine.  The measurements of flushed samples 

indicate that the mean alkalinity remained high (approximately 272 mg/L as CaCO3) 

throughout the sampling period.  The mean free and total chlorine residuals ranged 

between 0.13 – 0.25, and 0.20 – 0.42 mg/L, respectively, but did not change significantly 

with the introduction of orthophosphate.  The mean water temperature remained 

statistically constant throughout the sampling period, at approximately 21°C.    

There was a statistically significant change in two parameters: pH and dissolved 

oxygen.  The decrease in pH level is likely due to fluctuations in the source water quality, 

rather than any effect of the added orthophosphate.  Source water quality reports in 

Appendix A indicate that Area B water’s pH fluctuated in a range between 7.2 – 7.5 

during the sampling period.  Furthermore, based on the pH-copper solubility relationship 

established in Figure 10, such a decrease in pH would typically lead to increased copper 

solubility.  Therefore, the observed decrease in copper solubility, despite the pH decrease, 

provides further evidence to support orthophosphate’s effectiveness as an inhibitor of 

copper solubility. 

Finally, while it is unknown whether the increase in dissolved oxygen is a result 

of any source water fluctuations, it is possible that the oxygen increase results from the 

addition of orthophosphate in the CDC system.  According to the literature, an increase in 

dissolved oxygen is an expected effect: Dartmann et al. (2004) propose that “dosing of 

orthophosphate can lower the content of copper in water by reducing the oxygen 

consumption.”  Therefore, while the oxygen level increase cannot conclusively be 
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attributed to either the source water or the orthophosphate’s impact, the change does not 

contradict that observed in previous studies.  

 The system costs to date include a $15,000 investment for design and installation, 

along with a $1,200 monthly maintenance and operation expense.  Assuming a ten-year 

capitalization for the system, this equates to a $15,900 annual expense.  As a point 

treatment for a single facility, this represents a considerable expense.  Although the 

effectiveness of the system in reducing dissolved copper has been demonstrated in this 

research, the cost effectiveness of this treatment as a long-term solution is not clear.  

While beyond the scope of this investigation, the option of orthophosphate source 

treatment at the production wells (vice point treatment at the facilities) may be a more 

economic alternative, especially if additional facilities are found to contain elevated 

copper concentrations in their drinking water systems. 

     4.2.2.  What Reactions Are Occurring? 
  
  Water Quality Data Indicators 
 
 Water quality measurements after the addition of orthophosphate indicated a 

slight decrease in pH (likely due to source water fluctuation), a slight increase in 

dissolved oxygen, consistent levels of chlorine residual and alkalinity, and a consistent 

decrease in copper concentration after a 12 hour stagnation period.  These measurements 

are consistent with a transition from Cu(OH)2 (s) to Cu3(PO4)2 (s) on the interior pipe 

surface, as predicted in the literature (Edwards et al., 2005).  The decrease in copper’s 

observed concentration corresponds to the decrease in the equilibrium solubility of the 

respective solids due to the solubility product of the two species (log Ks0 (cupric 
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hydroxide) = 8.89; log Ks0 (cupric phosphate) = -36.76 (Schock et al., 1995)) when 

measured at the same alkalinity and same (or lower) pH levels. 

  Stagnation Time and Distance Indicators 

No significant change in orthophosphate concentrations was observed between 

measurements at the tap near the location where orthophosphate was added, and taps 70 

meters downstream (see Figure 28).  The steady levels of orthophosphate throughout the 

facility’s drinking water distribution system suggest that the orthophosphate is not being 

consumed while in the building’s distribution system.  In terms of stagnation time, the 

orthophosphate concentration does not appear to decrease significantly during a 12-hour 

stagnation period (Figures 25 through 27), again an observation that appears to indicate 

that orthophosphate is not being consumed in the building’s distribution system.  An 

interesting observation is the near-immediate impact of the orthophosphate treatment: 

copper concentration was reduced by over one-third of its pre-treatment levels within the 

first week of orthophosphate addition in February 2006 (the drop is clearly indicated in 

Figures 18 and 19).  This phenomenon, along with the apparent non-reactivity of the 

orthophosphate over distance and short-term stagnation time, may suggest a mechanism 

for the copper reduction.  The creation of a passivating film, or development of a lower-

solubility solid on the interior pipe walls may have occurred immediately upon 

introduction of the orthophosphate.  It is unknown whether the continued injection of 

orthophosphate is required to replenish the film/solids due to other reactions or 

degradation, as there is little evidence of orthophosphate consumption within the treated 

system.  Measurements of the water quality parameters following a brief or sustained 

suspension of the orthophosphate treatment might provide valuable insight.  
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Solid Analysis Indicators 
 

A comparison between the pre- and post-treatment pipe surface may be drawn 

based on the visual, compositional, and spectrographic data in Appendices G and H.  

Visual inspection indicates that the solid film appears to be slightly more uniform in its 

coverage on the surface of the post-treatment pipe. A comparison of pre- and post-

treatment elemental composition indicates a decrease in elemental copper and increases 

to carbon, oxygen and phosphorus.  However, XRD analysis of both pre- and post-

treatment pipe samples indicates that copper metal and cuprite are the dominant species 

in both cases.  Taken together, these solids indicators do not provide conclusive evidence 

of any specific reactions that occurred after the introduction of orthophosphate. 

     4.2.3.  How Do Results Compare With Equilibrium Models? 
 

In general, the values calculated by the cupric hydroxide model and VMINTEQ 

are relatively good predictors of laboratory or field measurements.  Figure 30, which 

compares the cupric hydroxide and VMINTEQ model predictions to jar test 

measurements for the copper-pH relationship, indicates that copper control cannot 

reasonably be achieved at a high alkalinity through pH reduction alone: both models and 

lab results require a pH greater than 8.5 to reduce copper below 1.3 mg/L.  Note that the 

jar test does not rise exponentially as pH decreases toward 6.5, as predicted by the 

equilibrium models.  This limitation is simply due to the fact that the jar test was 

performed after spiking the sample water with a 15 mg/L copper solution: this dose set an 

upper limit on maximum copper concentration, regardless of pH.   
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Figure 30.  Model Predictions vs Jar Test, Copper – pH 

 
Similarly, Figure 31 provides a comparison between both model predictions and 

jar test measurements for the copper – orthophosphate relationship.   
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Figure 31.  Model Predictions vs Jar Test, Copper – Orthophosphate 
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Note that while all three relationships follow the same trend, there is a greater disparity 

between the models’ predictions and the jar test results than were observed in the copper-

pH relationships shown in Figure 30.  While the cupric hydroxide model slightly under-

predicts the observed jar test values for copper concentration, the discrepancy may be due 

to small levels of solid copper precipitate that passed through the 2.0 and 0.2 μm filter 

and were then measured in the ICP as total copper.  The model’s predictions are based 

purely on dissolved copper levels, and would therefore be slightly lower than the 

observed values.  While the VMINTEQ predictions are higher than both the cupric 

hydroxide model and the jar test results, this difference is due to the higher solubility 

constants used in the VMINTEQ model.  The thermodynamic constants used in the 

cupric hydroxide model are empirical values based on a process of continual updates 

from laboratory and field measurements, and appear to provide a more accurate 

prediction of equilibrium solubility than VMINTEQ.  However, when the VMINTEQ 

program is run using the cupric hydroxide constants, its revised predictions are much 

closer to the cupric hydroxide model results.    

 Figure 32 presents a comparison of model predictions and field measurements for 

the copper – orthophosphate relationship.  Like Figure 31, there is a similar trend for each 

of the three relationships.  As discussed above, VMINTEQ slightly over-predicts the field 

and the cupric hydroxide model results due to the high solubility constants used in that 

model.  The cupric hydroxide model over-predicts copper concentration in the absence of 

orthophosphate, but after the orthophosphate dosage increases above 2 mg/L, the model 

tracks closer to the linear trend line derived from the field measurements.  Due to a few 

extreme values, the standard deviation of the field measurement’s linear trend line is 
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0.53.  The discrepancy at low orthophosphate levels may simply be a result of the copper 

in the system failing to equilibrate after only 12 hours.  Measurements taken 48 to 72 

hours later would likely correspond more closely to the model’s predicted equilibrium 

values. 
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Figure 32.   Model Predictions vs Jar Test, Copper – Orthophosphate 
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V.  Conclusions And Recommendations  

 
 
 
5.1.  Conclusions  
 
 
     5.1.1.  Orthophosphate Effectiveness.   
 

Orthophosphate treatment appears to be an effective method for dissolved copper 

reduction in high-alkalinity water systems.  High-alkalinity water sources present a 

challenge to water suppliers due to the substantial increase in dissolved copper that is 

observed to occur in the presence of high carbonate concentrations.  Orthophosphate has 

proved to be an effective solution to reduce copper levels when high alkalinity and 

hardness prevent pH adjustment.  This research has demonstrated that orthophosphate can 

provide effective and sustained reduction in copper concentrations to below the LCR 

action level of 1.3 mg/L in water with alkalinity as high as 280 mg/L.  

     5.1.2.  Recommended Dosage For Orthophosphate Treatment.   
 

For similar waters (pH = 7.5, alkalinity = 280 mg/L), a dose of 3 to 4 mg/L 

orthophosphate is recommended to ensure adequate protection within a facility’s drinking 

water system.  This level is based on both theoretical calculations (using the Cu(OH)2 

model) and field observations from this research.  Although smaller orthophosphate doses 

(1.5 to 2.5 mg/L) had a measurable effect on the observed copper concentration, 

sustained copper levels below the LCR action level were not achieved until the 3 mg/L 

dosage was implemented. 
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     5.1.3.  Orthophosphate Treatment Timeframe.   
 

Orthophosphate injection provides a fast-acting treatment.   Significant reduction 

in copper levels was observed within the first week of orthophosphate addition.  

Following this initial observation, copper levels remained consistently lower so long as 

orthophosphate additions were maintained.  However, orthophosphate’s effectiveness 

decreases as stagnation time increases, until a maximum copper concentration 

equilibrates in the system. 

     5.1.4.  Reactions in System.   
 

The increase in elemental phosphorus and oxygen, along with the reduced solid 

copper solubility, suggest the formation of a phosphate solid, although XRD analysis 

does not confirm the presence of those solids.  The insignificant reduction in 

orthophosphate levels during 12 hours of stagnation and 70 meters of flow do not indicate 

the steady consumption of orthophosphate in the water system.  Given these observations 

and the rapid decrease of copper solubility during the first week of orthophosphate 

treatment, it is possible that the initial orthophosphate doses quickly formed a new 

phosphate film or solid scale; subsequent orthophosphate consumption is relatively low, 

and limited to maintenance of that scale. 

     5.1.5.  Modeling.   
 

Chemical equilibrium models such as VMINTEQ or the USEPA cupric hydroxide 

program are useful tools for predicting the effect of orthophosphate on copper 

concentration.  So long as basic water quality data are available, these models use their 

thermodynamic databases to calculate the expected concentrations of all species.  This 

research has confirmed that model predictions reasonably approximate field 
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measurements, demonstrating that these models provide a low-cost and efficient starting 

point for developing water treatment strategies.  The cupric hydroxide model allows the 

user a greater degree of control over the species to be isolated in a system’s reactions, but 

is difficult to operate.  VMINTEQ offers an easier user interface for basic system 

calculations, but requires additional work if the user wishes to isolate specific reactions or 

modify thermodynamic data. 

 
5.2.  Recommendations For Additional Research 
 
1.  Investigate the short- and long-term effects of stopping orthophosphate addition upon 

dissolved concentrations and the solid film.  

 
2.  Repeat the measurements performed in this study under laboratory conditions, using a 

section of pipe from the WPAFB CDC.  In the laboratory, the variables in this research, 

such as pH, orthophosphate concentration, and stagnation time, could be controlled.  Use 

the results of the controlled study to validate the field observations from this research. 

 
3.  Perform continued measurements, including surface analyses, over the next several 

years to determine if orthophosphate treatment is preventing natural scale buildup in the 

WPAFB CDC’s water lines.  A baseline for comparison would be the natural scale that 

was observed in an earlier study in a range of facilities of various ages at WPAFB 

(Turek, 2006).   

 
4.  Cost analysis.  Conduct an analysis to determine the cost and benefits of “point” 

treatment for copper reduction at individual buildings (as described in this research) 

compared to source treatment at a water treatment facility.  Such an analysis should 
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consider the potential need for wastewater treatment to manage phosphates that may 

increase in wastewater as a result of adding orthophosphate at the water source. 

 
5.  Additional modeling applications.  Using the USEPA Cu(OH)2 model as a baseline, 

develop an updated model with a more user-friendly interface.  Such a modification 

would combine the ease of use currently provided by VMINTEQ with the level of control 

currently provided by the Cu(OH)2 model.   Apply the model to simulate results observed 

in the studies recommended above.       

 
6.  Investigate copper levels at 0600 hrs Monday mornings to determine typical 

concentrations after 48+ hours of stagnation time.  If the levels are consistently high, 

evaluate two options:  1) one-time flushing on Monday mornings to eliminate the long-

stagnant water; or 2) increased orthophosphate injection rate to a dosage to that 

overcomes the Monday-morning levels.  Option two would avoid the requirement for 

flushing (and the possibility that flushing is not performed correctly), but would consume 

much more orthophosphate during the week than the current 3.0 mg/L level required to 

achieve 1.3 mg/L copper concentrations Tuesday through Friday.   
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Appendix A:  Water Quality Plant Data 

 
 

Figures 33 and 34 provide historic water quality data covering the research period (Sep 

05 through Jul 06).  The data is based on the 88 ABW Environmental Management 

office’s log of Plant Distribution Monthly Operations Reports. 
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Figure 33.  Hardness and Alkalinity Data (Plant Values) 
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Figure 34.  Chlorine and Phosphate Data (Distribution System) 
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Appendix B:  Simplified Calculation For Equilibrium Dissolved Copper Prior To 

Orthophosphate Treatment 
 

The concentration of total dissolved copper in equilibrium with solid Cu(OH)2 is 

calculated below as 1.1mg/L.  The calculation assumes a simplified system in which only 

Cu(OH)2 (s) and associated dissolved Cu2+ hydroxide species are present in distilled 

water; alkalinity or carbonate species are not considered.  Note that the values of the 

solubility product (Ks0) and stability constants (*B) are based on those reported by 

Schock et al (1995).  Using the Excel Solver algorithm, the total dissolved copper 

concentration was iteratively adjusted until the activity quotient (Q0) matched the 

solubility product for the given pH value.  This point represents the maximum theoretical 

level of dissolved copper at that pH.   

Note that these calculations are performed in a simplified system in which 

Cu(OH)2 (s) and the Cu2+ hydroxide species are considered in isolation: no consideration 

for alkalinity or carbonate species are included in the calculations.  Therefore, when 

comparing these results to the model output values, the model simulations should be 

performed in the absence of carbonates to allow a meaningful comparison.  (Refer to 

Figure 3.7. for further discussion). 

Finally, it should be noted that the pH selected for these calculations (7.5) is based 

on the typical level observed in the field.  In this simplified system, charge balance would 

drive the pH to a level of 9.2 if only the species identified in Worksheet 1 were present; 

at that point, the copper concentration would be reduced to an insignificant level.  A pH 
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near 7.5 could be sustained through the addition of a weak acid/base pair to serve as a 

buffer in the neutral range. 

 The calculations (performed in MS Excel) are provided below. 

1. Water Parameters: pH 7.5 1E-14
{H+} 3.16E-08

{OH-} 3.16E-07

2. Solubility Product (Ks0) Cu(OH)2: log *Ks0 *Ks0 Ks0 = *Ks0 x Kw
n Ks0 log Ks0

(Schock, 1995: Table 2): 8.89 7.76E+08 7.76E-20 -19.11

3.  Mass Balance:
(Benjamin, 2002: Eqn 8.40):      TOTCu = {Cu2+}(1+[sum(BOH{OH-})])

n OH- Reaction *log B *B
(Schock, 1995: Table 2): 1 Cu2+ + OH- <> Cu(OH)+ -7.98 1.05E-08

2 Cu2+ + 2OH- <> Cu(OH)2 -13.68 2.09E-14
3 Cu2+ + 3OH- <> Cu(OH)3

- -26.9 1.26E-27
4 Cu2+ + 4OH- <> Cu(OH)4

2- -39.6 2.51E-40

B = *B / Kw
n B log B {OH-}n B{OH-}n

1.05E+06 6.02 3.162E-07 3.31E-01
2.09E+14 14.32 1E-13 2.09E+01
1.26E+15 15.1 3.162E-20 3.98E-05
2.51E+16 16.4 1E-26 2.51E-10

2.12E+01

     {Cu2+} = TOTCu / (1+[sum(BOH{OH-})])

{Cu2+} {Cu2+}
(M) 7.76E-07 (mg/L) 4.93E-02

4.  Solubility Calculations:
Activity Quotient (Q0):      Q0 = {Cu2+}{OH-}2

log
Q0 7.76E-20 -19.11000

(From above): Ks0 7.76E-20 -19.11000
5.232E-26 0.00000

(Precipitation or Dissolution?):  Will Precipitate

(Equilibrium Summary):     TOTCu = {Cu2+}(1+[sum(BOH{OH-})])

TOTCu TOTCu
(mg/L) 1.0955 (M) 1.73E-05
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Appendix C:  Soluble Copper vs pH Jar Tests Results 

 
 

 The raw results of the copper vs pH jar test procedure are provided in Table 7.   A 

linear regression of this data is illustrated in Figure 35. 

Table 7.  Jar Test Results, Copper vs pH 

pH Cu (mg/L)
  

6.56 13.6 
6.86 10.6 
7.38 6.4 
7.87 2.9 
8.36 1.8 
8.55 0.9 

 

y = -6.2743x + 53.697
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Figure 35.  Copper vs pH Linear Equations 
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Appendix D:  Soluble Copper vs Orthophosphate Concentration 

 
 

The raw results of the copper vs orthophosphate jar test procedure are provided in 

Table 8.   A linear regression of this data is illustrated in Figure 36. 

 

Table 8.  Jar Test Results, Copper vs Orthophosphate 

Sample pH

PO4 
Backgroun
d (mg/L)

PO4 
Added 
(mL)

PO4 
Added 
(mg/L)

PO4 Total 
(Predicted)

(mg/L)

PO4 Actual 
(Unfiltered) 

(mg/L)

PO4 Final 
(Filtered) 
(mg/L)

Cu 
Background 

(mg/L)

Cu 
Added 
(mL)

Cu Added 
(mg/L)

Cu Total 
(Predicted)

(mg/L)

Cu Actual 
(Unfiltered
) (mg/L)

Cu Final 
(Filtered) 

(mg/L)
0 7.44 0.63 0.00 0.00 0.63 0.63 0.63 2.76 4.50 6.03 8.79 8.38 4.32
1 7.51 0.63 0.35 0.48 1.11 1.02 2.52 2.76 4.50 6.03 8.79 6.84 3.76
2 7.59 0.63 0.70 0.97 1.60 1.47 1.27 2.76 4.50 6.03 8.79 7.56 3.52
3 7.51 0.63 1.40 1.93 2.56 2.14 0.51 2.76 4.50 6.03 8.79 7.58 3.26
4 7.52 1.28 4.20 5.80 7.08 6.17 1.99 1.72 4.50 6.03 7.75 6.34 1.32

 

 

 

Soluble Copper vs Orthophosphate
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Figure 36.  Copper vs Orthophosphate Linear Equations 
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Appendix E:  Field Results vs Jar Test Comparison 
 
 

 Figures 37 and 38 provide a comparison between the results of jar test 

measurements and field data.  The charts plot copper concentration as a function of 

orthophosphate dosage.  The linear equations representing the three cases are provided on 

each chart. 
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Figure 37.  Flushed Field vs Jar Test, Linear Equations 
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Figure 38.  Stagnant Field vs Jar Test, Linear Equations 
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Appendix F:  Statistical Analysis of Change in Mean Copper Concentration 
 

For each of the six cases the copper concentrations were tabulated for all 

measurements taken before the orthophosphate treatment (typically eight samples 

between October and December 2005, “n1”) and all measurements taken after the 

treatment started (typically twelve samples between February and August 2006, “n2”).  

For both the “before” and “after” series of measurements, a mean concentration, standard 

deviation, and sample variance were computed.  The rejection region for a 95% 

confidence interval was defined from a Student’s t table using tα/2 = 0.025, using 

degrees of freedom (ν) = 

22 2
1 2

1 2
2 22 2

1 2

1 2

1 21 1

s s
n n

s s
n n

n n

⎛ ⎞⎛ ⎞ ⎛ ⎞
+⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

− −

 , 

where  s = sample standard deviation,  

n = sample size for the “before” (1) and “after” (2) samples. 

The test statistic for each case was calculated by the equation: 

( ) ( ) ( )2 2
1 2 1 1 2 2/ / /t X X s n s n= − +  , 

where X = sample mean, s = sample standard deviation, and n = sample size, and for the 

“before” (1) and “after” (2) samples. 

(McClave et al., 2005) 
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Appendix G:  Solids Surface Analysis Before Orthophosphate Treatment 

 

 

 

Figure 39.  Digital Picture of Rm B14 Copper Pipe 

 

Figure 40.  Digital Picture of Rm A6 Copper Pipe 

Note thin film of deposits on majority of all pipes’ interior surface. 
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Figure 41.  3x Stereomicroscope Picture of Deposits on Pipe Wall 

 

 

Figure 42.  3x Stereomicroscope Picture of Deposit on Pipe Interior 
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Figure 43.  XRD Spectroscopic Analysis of Surface Solids 

 

Note that XRD results suggest the presence of elemental copper metal and cuprite.  

 

 
 

Table 9.  Composition Analysis of Surface Solids (Pre-Treatment) 
Spectrum In stats. C O Al P Cl Ca Fe Cu Total  
            
Spectrum 1 Yes 10.45 10.16 0.13 1.74 0.77 0.19 0.29 76.27 100.00  
Spectrum 2 Yes 10.02 9.95 0.15 1.67 0.80 0.23 0.30 76.87 100.00  
            
Mean  10.24 10.06 0.14 1.70 0.79 0.21 0.30 76.57 100.00  
Std. deviation  0.31 0.14 0.02 0.05 0.02 0.03 0.01 0.42   
Max.  10.45 10.16 0.15 1.74 0.80 0.23 0.30 76.87   
Min.  10.02 9.95 0.13 1.67 0.77 0.19 0.29 76.27   

All results in weight% 
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Appendix H:  Solids Surface Analysis After Orthophosphate Treatment 

 

 

 

 

 

 

 

Figure 44.  Digital Pictures of Rm B14 Copper Pipe 

 

 

 

 

 

 

 

Figure 45.  Digital Picture of Rm A6 Copper Pipe 

Note copper deposits and thicker film on majority of all pipes’ interior surface. 
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Figure 46.  XRD Spectroscopic Analysis of Surface Solids 

Note that XRD results suggest the presence of elemental copper metal and cuprite.  

 

Table 10.  Composition Analysis of Surface Solids (Post-Treatment) 
Spectrum In 

stats. 
C O Al Si P Cl Ca Fe Cu Total  

             
Spectrum 1 Yes 17.03 12.64 0.14 0.16 1.98 0.28 0.32 0.55 66.90 100.00  
Spectrum 2 Yes 21.06 12.95 - - 1.89 0.20 0.28 0.56 63.05 100.00  
Std. deviation  2.85 0.22 - - 0.06 0.05 0.03 0.00 2.72   
Mean  19.05 12.80 0.14 0.16 1.94 0.24 0.30 0.56 64.97   
Max.  21.06 12.95 0.14 0.16 1.98 0.28 0.32 0.56 66.90   
Min.  17.03 12.64 0.14 0.16 1.89 0.20 0.28 0.55 63.05   

All results in weight% 
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